
Tacking Coding Interviews
With C++

Programming Portfolio

Attendance

Programming Portfolio Tacking Coding Interviews Week 1 Friday T2 2024 1 / 33

Pairing Amazonians
To enforce Amazon’s value of ‘letting the young learn from their elders’, the company
pairs the least experienced software developer with the most experienced software
developer, the second least experienced developer with the second most experienced
developer and so on. The experience of a pair is the average of the experiences of the
two individuals. For example, if we have 6 employees with experiences (in years) of
1,9,12,5,8,6, then we’d have the pairs (1, 12), (5, 9), (6, 8) following Amazon’s pairing rule.

How many unique experiences of pairs are there? In our example, the respective
experiences of these pairs are 13

2 , 7, 7, so there are two unique experiences (132 and 7).

Programming Portfolio Tacking Coding Interviews Week 1 Friday T2 2024 2 / 33

Pairing Amazonians
To enforce Amazon’s value of ‘letting the young learn from their elders’, the company
pairs the least experienced software developer with the most experienced software
developer, the second least experienced developer with the second most experienced
developer and so on. The experience of a pair is the average of the experiences of the
two individuals. For example, if we have 6 employees with experiences (in years) of
1,9,12,5,8,6, then we’d have the pairs (1, 12), (5, 9), (6, 8) following Amazon’s pairing rule.

How many unique experiences of pairs are there? In our example, the respective
experiences of these pairs are 13

2 , 7, 7, so there are two unique experiences (132 and 7).

Programming Portfolio Tacking Coding Interviews Week 1 Friday T2 2024 2 / 33

Which Data Structure?

Whenever a question asks about any form of ‘uniqueness’, this is a good sign that we can
use a . . . set!

Programming Portfolio Tacking Coding Interviews Week 1 Friday T2 2024 3 / 33

Which Data Structure?
Whenever a question asks about any form of ‘uniqueness’, this is a good sign that we can
use a . . .

set!

Programming Portfolio Tacking Coding Interviews Week 1 Friday T2 2024 3 / 33

Which Data Structure?
Whenever a question asks about any form of ‘uniqueness’, this is a good sign that we can
use a . . . set!

Programming Portfolio Tacking Coding Interviews Week 1 Friday T2 2024 3 / 33

What is a Set?
A set is a collection of unique elements.
It supports operations like insertion, deletion, unions, intersections, and membership
testing.
In C++, sets are provided in the Standard Template Library (STL)

Can be accessed using "#include <set>"

Programming Portfolio Tacking Coding Interviews Week 1 Friday T2 2024 4 / 33

Different Types of Sets
set:

Implemented using binary search trees (usually Red-Black trees)
Stores elements in order
O(log n) insertion, lookup, deletion

unordered_set:
Implemented using hash tables
Elements are not stored in order
O(1) insertion, lookup, deletion (on average) but in the worst case could be O(n) (during
rehashing)

multiset:
Can store repeating elements (non-unique) in order
Implemented using binary search trees (usually Red-Black trees)
O(log n) insertion, lookup, deletion

We also sometimes use union, intersection which just follows the same properties as a
set in maths.

Programming Portfolio Tacking Coding Interviews Week 1 Friday T2 2024 5 / 33

Different Types of Sets
set:

Implemented using binary search trees (usually Red-Black trees)
Stores elements in order
O(log n) insertion, lookup, deletion

unordered_set:
Implemented using hash tables
Elements are not stored in order
O(1) insertion, lookup, deletion (on average) but in the worst case could be O(n) (during
rehashing)

multiset:
Can store repeating elements (non-unique) in order
Implemented using binary search trees (usually Red-Black trees)
O(log n) insertion, lookup, deletion

We also sometimes use union, intersection which just follows the same properties as a
set in maths.

Programming Portfolio Tacking Coding Interviews Week 1 Friday T2 2024 5 / 33

Different Types of Sets
set:

Implemented using binary search trees (usually Red-Black trees)
Stores elements in order
O(log n) insertion, lookup, deletion

unordered_set:
Implemented using hash tables
Elements are not stored in order
O(1) insertion, lookup, deletion (on average) but in the worst case could be O(n) (during
rehashing)

multiset:
Can store repeating elements (non-unique) in order
Implemented using binary search trees (usually Red-Black trees)
O(log n) insertion, lookup, deletion

We also sometimes use union, intersection which just follows the same properties as a
set in maths.

Programming Portfolio Tacking Coding Interviews Week 1 Friday T2 2024 5 / 33

Different Types of Sets
set:

Implemented using binary search trees (usually Red-Black trees)
Stores elements in order
O(log n) insertion, lookup, deletion

unordered_set:
Implemented using hash tables
Elements are not stored in order
O(1) insertion, lookup, deletion (on average) but in the worst case could be O(n) (during
rehashing)

multiset:
Can store repeating elements (non-unique) in order
Implemented using binary search trees (usually Red-Black trees)
O(log n) insertion, lookup, deletion

We also sometimes use union, intersection which just follows the same properties as a
set in maths.

Programming Portfolio Tacking Coding Interviews Week 1 Friday T2 2024 5 / 33

Time Complexities of Set Operations
Ordered Set / Multiset (‘set / multiset‘)

Insert: O(log n)
Erase (single element): O(log n)
Erase (multiple elements): O(k log n) for k elements
Find: O(log n)
Lowerbound/Upperbound: O(log n)
Count: O(log n)
Size: O(1)

Unordered Set (‘unordered_set‘)
Insert: Average O(1), Worst O(n)
Erase (single element): Average O(1), Worst O(n)
Find: Average O(1), Worst O(n)
Count: Average O(1), Worst O(n)
Size: O(1)

Programming Portfolio Tacking Coding Interviews Week 1 Friday T2 2024 6 / 33

Time Complexities of Set Operations
Ordered Set / Multiset (‘set / multiset‘)

Insert: O(log n)
Erase (single element): O(log n)
Erase (multiple elements): O(k log n) for k elements
Find: O(log n)
Lowerbound/Upperbound: O(log n)
Count: O(log n)
Size: O(1)

Unordered Set (‘unordered_set‘)
Insert: Average O(1), Worst O(n)
Erase (single element): Average O(1), Worst O(n)
Find: Average O(1), Worst O(n)
Count: Average O(1), Worst O(n)
Size: O(1)

Programming Portfolio Tacking Coding Interviews Week 1 Friday T2 2024 6 / 33

Using Sets
// Initialising a set

set<int> s;

// Inserting values into the set

s.insert(10);

s.insert(20);

s.insert(30);

// Checking the size of the set

cout << "Size: " << s.size() << endl; // Prints 'Size: 3'

// Finding an element in the set

if (s.find(20) != s.end()) {

cout << "20 is in the set" << endl;

}

// A different type of lookup: lower_bound, upper_bound (like binary search)

cout << *s.lower_bound(10) << endl; // will output 10

cout << *s.upper_bound(10) << endl; // will output 20

// Removing an element from the set

s.erase(10);

Programming Portfolio Tacking Coding Interviews Week 1 Friday T2 2024 7 / 33

Using Sets
// Iterating through a set

for (auto it = s.begin(); it != s.end(); ++it) {

cout << *it << " ";

}

cout << endl;

// Another way to iterate using range-based for loop

for (int x : s) {

cout << x << " ";

}

cout << endl;

// Check if the set is empty

if (s.empty()) {

cout << "The set is empty" << endl;

}

// Clear all elements in the set

s.clear();

Programming Portfolio Tacking Coding Interviews Week 1 Friday T2 2024 8 / 33

It’s your turn!
#include <bits/stdc++.h>

int uniqueExperiences(vector<int> xp) {

int numEmployees;

cin >> numEmployees; // analagous to scanf("%d", &numEmployees) in C

vector<int> xp; // dynamically sized array to store the experience levels

// scan in all the experiences (in years) of the Amazon employees

for (int i = 0; i < numEmployees; i++) {

int currentXp;

cin >> currentXp;

xp.push_back(currentXp);

}

// TODO: Return the number of unique experiences!

}

Programming Portfolio Tacking Coding Interviews Week 1 Friday T2 2024 9 / 33

A Nice and Easy Solution
#include <bits/stdc++.h>

int uniqueExperiences(vector<int> xp) {

sort(xp.begin(), xp.end());

set <int> uniquePairs;

for (int i = 0; i < xp.size() / 2; i++) {

int currentPairXp = xp[i] + xp[xp.size() - 1 - i];

uniquePairs.insert(currentPairXp);

}

return uniquePairs.size();

}

Programming Portfolio Tacking Coding Interviews Week 1 Friday T2 2024 10 / 33

Maps
Maps are conceptually similar to sets, but instead of containing unique elements, maps
contain unique "keys" that are mapped to associated "values".

Programming Portfolio Tacking Coding Interviews Week 1 Friday T2 2024 11 / 33

Using Maps
// Initialising a map

map<int, string> m;

// Inserting values into the map

m[1] = "Jacqueline";

m.insert(make_pair(2, "Blake"));

// Modifying values

m[2] = "Jake";

// Accessing a value

cout << m[1] << endl; // Prints 'Jacqueline'

// Other types

map<int, int> m2;

m2[1] = 2;

m2[2] = 3;

m2[1]++; // Now m2[1] == 3
Programming Portfolio Tacking Coding Interviews Week 1 Friday T2 2024 12 / 33

Using Maps
// Iterating through a map

for (auto it = m.begin(); it != student.end(); ++it) {

cout << it->first << " " << it->second << endl;

}

for (auto x : m) {

cout << x.first << " " << x.second << endl;

}

// Check if empty

m.empty();

// Get size

m.size();

// Remove a key-value pair

m.erase(1);

Programming Portfolio Tacking Coding Interviews Week 1 Friday T2 2024 13 / 33

Ordered Maps
Just like with sets, we have a choice between ordered maps and unordered maps.

Ordered maps will maintain the order of the key-value entries, sorting on the key, while
unordered maps do not maintain this order.

This is useful if you want to iterate through your map in order of key. Furthermore, it
allows you to search for a certain key in O(log n) time.

// Returns an iterator to the first element not less than the given key

lower = lower_bound(v.begin(), v.end(), 2);

// Returns an iterator to the first element greater than the given key

upper = upper_bound(v.begin(), v.end(), 3);

Programming Portfolio Tacking Coding Interviews Week 1 Friday T2 2024 14 / 33

Other Maps
Again, like sets, there are other variations of maps.

map: stores key-value pairs in order, O(logn) insertion, lookup, deletion
unordered_map: does not store key-value pairs in order, O(1) insertion, lookup,
deletion (on average)
multimap: like a map but can store multiple copies of same key
unordered_multimap: like a unordered_map but can store multiple copies of same
key

So, use unordered_maps if you don’t need to worry about maintaining order, otherwise it
may be a good idea to use a regular ordered map.

Programming Portfolio Tacking Coding Interviews Week 1 Friday T2 2024 15 / 33

Map Problem
Given a list of words, you are asked to write a program to find the most frequent word and
how many times it occurs. (https://vjudge.net/contest/583927problem/F)

Programming Portfolio Tacking Coding Interviews Week 1 Friday T2 2024 16 / 33

Problem Set

Programming Portfolio Tacking Coding Interviews Week 1 Friday T2 2024 17 / 33

Map Problem
// Sample solution

int n; cin >> n;

unordered_map<string, int> m;

for (int i = 0; i < n; i++) {

string s; cin >> s;

m[s]++;

}

string word = "";

int maxFreq = 0;

for (const auto& entry : m) {

if (entry.second > maxFreq || (entry.second == maxFreq && entry.first > word)) {

word = entry.first;

maxFreq = entry.second;

}

}

cout << word << ' ' << maxFreq << endl;
Programming Portfolio Tacking Coding Interviews Week 1 Friday T2 2024 18 / 33

Queue

Programming Portfolio Tacking Coding Interviews Week 1 Friday T2 2024 19 / 33

Using Queues
// Initialising a queue

queue<pair<int, int>> q;

// Inserting values into the queue O(1)

q.push(1);

q.push(3);

// q = 1 -> 3

// Getting the size of the pq O(1)

cout << q.size() << endl; // 2

// Getting the element at the front of the queue O(1)

cout << q.front() << endl; // 1

// Dequeuing the first item in the queue and storing it O(1)

q.pop()// q = 3

//checks if the queue is empty O(1)

q.empty() //false

Programming Portfolio Tacking Coding Interviews Week 1 Friday T2 2024 20 / 33

Knights
Given a square chessboard of N x N size, the position of the Knight and the position of a
target are given. Find the minimum steps a Knight will take to reach the target position.

Programming Portfolio Tacking Coding Interviews Week 1 Friday T2 2024 21 / 33

Knights

Programming Portfolio Tacking Coding Interviews Week 1 Friday T2 2024 22 / 33

Knights
We can think of every move by the knight as having a distance or cost of 1. If we can
get to our current cell in n moves then we can get to the surrounding 8 ish cell in n +
1 moves (unless they can already be achieved in less).

Since we’re trying to look for the minimum number of moves, it would be sensible to
consider the unexplored neighbours of cells that require less moves to get to before
we explore the ones that take a long time to get to. These cells are near the
beginning of the queue.
If we start the queue with the square that takes no moves to get to. As we keep
taking neighbours of cells that takes few moves to get to, squares that takes less
moves to get to will always be queued before ones that take more moves to get to.
They will thus also be considered first.

Programming Portfolio Tacking Coding Interviews Week 1 Friday T2 2024 23 / 33

Knights
We can think of every move by the knight as having a distance or cost of 1. If we can
get to our current cell in n moves then we can get to the surrounding 8 ish cell in n +
1 moves (unless they can already be achieved in less).
Since we’re trying to look for the minimum number of moves, it would be sensible to
consider the unexplored neighbours of cells that require less moves to get to before
we explore the ones that take a long time to get to. These cells are near the
beginning of the queue.

If we start the queue with the square that takes no moves to get to. As we keep
taking neighbours of cells that takes few moves to get to, squares that takes less
moves to get to will always be queued before ones that take more moves to get to.
They will thus also be considered first.

Programming Portfolio Tacking Coding Interviews Week 1 Friday T2 2024 23 / 33

Knights
We can think of every move by the knight as having a distance or cost of 1. If we can
get to our current cell in n moves then we can get to the surrounding 8 ish cell in n +
1 moves (unless they can already be achieved in less).
Since we’re trying to look for the minimum number of moves, it would be sensible to
consider the unexplored neighbours of cells that require less moves to get to before
we explore the ones that take a long time to get to. These cells are near the
beginning of the queue.
If we start the queue with the square that takes no moves to get to. As we keep
taking neighbours of cells that takes few moves to get to, squares that takes less
moves to get to will always be queued before ones that take more moves to get to.
They will thus also be considered first.

Programming Portfolio Tacking Coding Interviews Week 1 Friday T2 2024 23 / 33

Knights and Queues
add the starting position of the knight onto the queue (least moves, that being 0)

take the square at the start of the queue, check if it is the target.
if not, add its unvisited neighbours to the end of the queue, indicating that it takes one
more move than the one we for to it from.
repeat until the queue is empty (when there are no more unvisited squares we can
get to)
**notice that at any point in time, the items closer to the beginning of the queue will
take less moves to get to than the ones near the back of the queue (they can be
equal) as we always process the ones that take less moves to get to.

Programming Portfolio Tacking Coding Interviews Week 1 Friday T2 2024 24 / 33

Knights and Queues
add the starting position of the knight onto the queue (least moves, that being 0)
take the square at the start of the queue, check if it is the target.

if not, add its unvisited neighbours to the end of the queue, indicating that it takes one
more move than the one we for to it from.
repeat until the queue is empty (when there are no more unvisited squares we can
get to)
**notice that at any point in time, the items closer to the beginning of the queue will
take less moves to get to than the ones near the back of the queue (they can be
equal) as we always process the ones that take less moves to get to.

Programming Portfolio Tacking Coding Interviews Week 1 Friday T2 2024 24 / 33

Knights and Queues
add the starting position of the knight onto the queue (least moves, that being 0)
take the square at the start of the queue, check if it is the target.
if not, add its unvisited neighbours to the end of the queue, indicating that it takes one
more move than the one we for to it from.
repeat until the queue is empty (when there are no more unvisited squares we can
get to)

**notice that at any point in time, the items closer to the beginning of the queue will
take less moves to get to than the ones near the back of the queue (they can be
equal) as we always process the ones that take less moves to get to.

Programming Portfolio Tacking Coding Interviews Week 1 Friday T2 2024 24 / 33

Knights and Queues
add the starting position of the knight onto the queue (least moves, that being 0)
take the square at the start of the queue, check if it is the target.
if not, add its unvisited neighbours to the end of the queue, indicating that it takes one
more move than the one we for to it from.
repeat until the queue is empty (when there are no more unvisited squares we can
get to)
**notice that at any point in time, the items closer to the beginning of the queue will
take less moves to get to than the ones near the back of the queue (they can be
equal) as we always process the ones that take less moves to get to.

Programming Portfolio Tacking Coding Interviews Week 1 Friday T2 2024 24 / 33

Implementation
#include <iostream>

#include <algorithm>

#include <vector>

#include <queue>

using namespace std;

int N;

int x1, y1;

int x2, y2;

typedef pair<int, int> coordinate;

queue <pair<coordinate, int>> q;

vector <vector <bool>> visited;

// all 8 ways a knight can jump (ordered from left to right)

int dx[8] = {-2, -2, -1, -1, 1, 1, 2, 2};

int dy[8] = {1, - 1, 2, -2, 2, -2, 1, -1};

bool outOfBoard(int x, int y);

bool equal(pair<int, int> a, pair<int, int> b);

int x(coordinate coord);

int y(coordinate coord);

int main(void) {

cin >> N;

cin >> x1 >> y1 >> x2 >> y2;

coordinate target = {x2, y2};

q.push({{x1, y1}, 0});

while (!q.empty()) {

coordinate currSq = q.front().first;

int minMoves = q.front().second;

q.pop();

// if its the target square, we can just return it.

if (equal(currSq, target)) return minMoves;

for (int i = 0; i < 8; i++) {

// a new square we can move to that's one more step away from the first item in the queue

coordinate newSq = {currSq.first + dx[i], currSq.second + dy[i]};

// if its out of bounds, or weve already check it, skip

if (outOfBoard(newSq) || visited[x(newSq)][y(newSq)]) break;
visited[x(newSq)][y(newSq)] = true;

// otherwise add it to the end of the queue, saying that we can get there if we use one more than the square were were on.

q.push({newSq, minMoves + 1});

}

}

return 0;

}

int x(coordinate coord) { return coord.first; }

int y(coordinate coord) { return coord.second; }

bool outOfBoard(coordinate coord){

return (x(coord) >= 0 && x(coord) < N && y(coord) >= 0 && y(coord) < N);

}

bool equal(coordinate a, coordinate b) {

return (a.first == b.first) && (a.second == b.second);

}

Programming Portfolio Tacking Coding Interviews Week 1 Friday T2 2024 25 / 33

Priority Queue
Priority queues are used to store elements in a sorted order.

What makes priority queues useful is that they can facilitate dynamic operations
For example: we can add new elements into the priority queue and the priority queue
will ensure that it will still be sorted - push
We can also delete the biggest element from the priority queue - pop
However, priority queue only allows you to see the biggest element in the priority
queue. To see the second largest element, you have to first perform the pop
operation, then look at the biggest element in the priority queue which will be the
second largest element.
And of course, we have the operation size which allows the user to query how many
elements are in the priority queue.

Programming Portfolio Tacking Coding Interviews Week 1 Friday T2 2024 26 / 33

Priority Queue
Priority queues are used to store elements in a sorted order.
What makes priority queues useful is that they can facilitate dynamic operations

For example: we can add new elements into the priority queue and the priority queue
will ensure that it will still be sorted - push
We can also delete the biggest element from the priority queue - pop
However, priority queue only allows you to see the biggest element in the priority
queue. To see the second largest element, you have to first perform the pop
operation, then look at the biggest element in the priority queue which will be the
second largest element.
And of course, we have the operation size which allows the user to query how many
elements are in the priority queue.

Programming Portfolio Tacking Coding Interviews Week 1 Friday T2 2024 26 / 33

Priority Queue
Priority queues are used to store elements in a sorted order.
What makes priority queues useful is that they can facilitate dynamic operations
For example: we can add new elements into the priority queue and the priority queue
will ensure that it will still be sorted - push
We can also delete the biggest element from the priority queue - pop

However, priority queue only allows you to see the biggest element in the priority
queue. To see the second largest element, you have to first perform the pop
operation, then look at the biggest element in the priority queue which will be the
second largest element.
And of course, we have the operation size which allows the user to query how many
elements are in the priority queue.

Programming Portfolio Tacking Coding Interviews Week 1 Friday T2 2024 26 / 33

Priority Queue
Priority queues are used to store elements in a sorted order.
What makes priority queues useful is that they can facilitate dynamic operations
For example: we can add new elements into the priority queue and the priority queue
will ensure that it will still be sorted - push
We can also delete the biggest element from the priority queue - pop
However, priority queue only allows you to see the biggest element in the priority
queue. To see the second largest element, you have to first perform the pop
operation, then look at the biggest element in the priority queue which will be the
second largest element.

And of course, we have the operation size which allows the user to query how many
elements are in the priority queue.

Programming Portfolio Tacking Coding Interviews Week 1 Friday T2 2024 26 / 33

Priority Queue
Priority queues are used to store elements in a sorted order.
What makes priority queues useful is that they can facilitate dynamic operations
For example: we can add new elements into the priority queue and the priority queue
will ensure that it will still be sorted - push
We can also delete the biggest element from the priority queue - pop
However, priority queue only allows you to see the biggest element in the priority
queue. To see the second largest element, you have to first perform the pop
operation, then look at the biggest element in the priority queue which will be the
second largest element.
And of course, we have the operation size which allows the user to query how many
elements are in the priority queue.

Programming Portfolio Tacking Coding Interviews Week 1 Friday T2 2024 26 / 33

Priority Queue
Under the hood, priority queues are implemented as a heap (if you don’t know what a
heap is do not worry). This makes it so that most operations are logarithmic time.

size() - O(1)

push() - O(log n)

pop() - O(log n)

top() - O(1)

Programming Portfolio Tacking Coding Interviews Week 1 Friday T2 2024 27 / 33

Priority Queue
Under the hood, priority queues are implemented as a heap (if you don’t know what a
heap is do not worry). This makes it so that most operations are logarithmic time.
size() - O(1)

push() - O(log n)

pop() - O(log n)

top() - O(1)

Programming Portfolio Tacking Coding Interviews Week 1 Friday T2 2024 27 / 33

Priority Queue
Under the hood, priority queues are implemented as a heap (if you don’t know what a
heap is do not worry). This makes it so that most operations are logarithmic time.
size() - O(1)

push() - O(log n)

pop() - O(log n)

top() - O(1)

Programming Portfolio Tacking Coding Interviews Week 1 Friday T2 2024 27 / 33

Priority Queue
Under the hood, priority queues are implemented as a heap (if you don’t know what a
heap is do not worry). This makes it so that most operations are logarithmic time.
size() - O(1)

push() - O(log n)

pop() - O(log n)

top() - O(1)

Programming Portfolio Tacking Coding Interviews Week 1 Friday T2 2024 27 / 33

Priority Queue
Under the hood, priority queues are implemented as a heap (if you don’t know what a
heap is do not worry). This makes it so that most operations are logarithmic time.
size() - O(1)

push() - O(log n)

pop() - O(log n)

top() - O(1)

Programming Portfolio Tacking Coding Interviews Week 1 Friday T2 2024 27 / 33

Using Priority Queues
// Initialising a priority queue

priority_queue<int> pq;

// Inserting values into the pq

pq.push(1);

pq.push(3);

// Getting the size of the pq

cout << pq.size() << endl; // 2

// Gettting the largest element of the pq

cout << pq.top() << endl; // 3

// Deleting the biggest element from the pq

pq.pop();

Programming Portfolio Tacking Coding Interviews Week 1 Friday T2 2024 28 / 33

Priority Queue
Technically, a set can do every operation that a priority queue can do. However,
priority queue tends to be a tiny bit faster (less constant factor) and is generally
preferred over a set for algorithms like Dijkstra’s algorithm etc.

Programming Portfolio Tacking Coding Interviews Week 1 Friday T2 2024 29 / 33

Question Time
Farmer John has N cows that need to be milked (1 <= N <= 10,000), each of which takes
only one unit of time to milk.

Being impatient animals, some cows will refuse to be milked if Farmer John waits too long
to milk them. More specifically, cow i produces gi gallons of milk (1 ≤ gi ≤ 1000), but only
if she is milked before a deadline at time di (1 ≤ di ≤ 10000). Time starts at t = 0, so at
most x total cows can be milked prior to a deadline at time t = x.

Please help Farmer John determine the maximum amount of milk that he can obtain if he
milks the cows optimally.

Programming Portfolio Tacking Coding Interviews Week 1 Friday T2 2024 30 / 33

Priority Queue
The most greedy approach unfortunately would not work.

The approach goes something like this: construct the scheduling starting from t = 0,
choosing the available cow of largest milk output gi at each time step.
A case where this would not work would be where we have two cows, C and D, with
deadlines at t = 1 and t = 2, respectively.
If cow D has a larger output, this rule would cause us to pick D first, but then C
becomes unavailable, even though we could have chose both cows by picking C first.

Programming Portfolio Tacking Coding Interviews Week 1 Friday T2 2024 31 / 33

Priority Queue
The most greedy approach unfortunately would not work.
The approach goes something like this: construct the scheduling starting from t = 0,
choosing the available cow of largest milk output gi at each time step.

A case where this would not work would be where we have two cows, C and D, with
deadlines at t = 1 and t = 2, respectively.
If cow D has a larger output, this rule would cause us to pick D first, but then C
becomes unavailable, even though we could have chose both cows by picking C first.

Programming Portfolio Tacking Coding Interviews Week 1 Friday T2 2024 31 / 33

Priority Queue
The most greedy approach unfortunately would not work.
The approach goes something like this: construct the scheduling starting from t = 0,
choosing the available cow of largest milk output gi at each time step.
A case where this would not work would be where we have two cows, C and D, with
deadlines at t = 1 and t = 2, respectively.
If cow D has a larger output, this rule would cause us to pick D first, but then C
becomes unavailable, even though we could have chose both cows by picking C first.

Programming Portfolio Tacking Coding Interviews Week 1 Friday T2 2024 31 / 33

Priority Queue
Instead, let us try doing the greedy approach starting at t = 10000 and working
towards the beginning.

Again, the rule will be, at each time step, to choose the best available cow available
at that time.
The key difference here is that once a cow becomes available (i.e., t decreases
below the cow’s deadline (di) it will always be available thereafter.
Hence, we can never miss a cow by delaying to take it (unless we haven’t taken it
before reaching t = 0).

Programming Portfolio Tacking Coding Interviews Week 1 Friday T2 2024 32 / 33

Priority Queue
Instead, let us try doing the greedy approach starting at t = 10000 and working
towards the beginning.
Again, the rule will be, at each time step, to choose the best available cow available
at that time.

The key difference here is that once a cow becomes available (i.e., t decreases
below the cow’s deadline (di) it will always be available thereafter.
Hence, we can never miss a cow by delaying to take it (unless we haven’t taken it
before reaching t = 0).

Programming Portfolio Tacking Coding Interviews Week 1 Friday T2 2024 32 / 33

Priority Queue
Instead, let us try doing the greedy approach starting at t = 10000 and working
towards the beginning.
Again, the rule will be, at each time step, to choose the best available cow available
at that time.
The key difference here is that once a cow becomes available (i.e., t decreases
below the cow’s deadline (di) it will always be available thereafter.
Hence, we can never miss a cow by delaying to take it (unless we haven’t taken it
before reaching t = 0).

Programming Portfolio Tacking Coding Interviews Week 1 Friday T2 2024 32 / 33

Priority Queue
Now that we have a greedy algorithm planned out, we need to figure out how to
implement it.

A naive implementation would take O(dN) time (where d is the maximum deadline);
there are d time steps and at each time step you have to determine the best of N
cows.
We can improve upon this by using a priority queue. As t decreases, any cow that
becomes available gets added to the priority queue.
When we need to find the best cow, we can just pop a cow off the top of the queue.
Using the priority queue gives a solution of O((d+N) logN) time.

Programming Portfolio Tacking Coding Interviews Week 1 Friday T2 2024 33 / 33

Priority Queue
Now that we have a greedy algorithm planned out, we need to figure out how to
implement it.
A naive implementation would take O(dN) time (where d is the maximum deadline);
there are d time steps and at each time step you have to determine the best of N
cows.

We can improve upon this by using a priority queue. As t decreases, any cow that
becomes available gets added to the priority queue.
When we need to find the best cow, we can just pop a cow off the top of the queue.
Using the priority queue gives a solution of O((d+N) logN) time.

Programming Portfolio Tacking Coding Interviews Week 1 Friday T2 2024 33 / 33

Priority Queue
Now that we have a greedy algorithm planned out, we need to figure out how to
implement it.
A naive implementation would take O(dN) time (where d is the maximum deadline);
there are d time steps and at each time step you have to determine the best of N
cows.
We can improve upon this by using a priority queue. As t decreases, any cow that
becomes available gets added to the priority queue.
When we need to find the best cow, we can just pop a cow off the top of the queue.
Using the priority queue gives a solution of O((d+N) logN) time.

Programming Portfolio Tacking Coding Interviews Week 1 Friday T2 2024 33 / 33

	Sets and Multisets
	Maps
	Queues and Priority Queues
	Queues
	Priority Queues

